skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Crous, Kristine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Crous, Kristine (Ed.)
    Abstract Herbivory can impact gas exchange, but the causes of interspecific variation in response remain poorly understood. We aimed to determine (1) what effects does experimental herbivory damage to leaf midveins have on leaf gas exchange and, (2) whether changes in leaf gas exchange after damage was predicted by leaf mechanical or venation traits. We hypothesized that herbivory-driven impacts on leaf gas exchange would be mediated by (1a/1b) venation networks, either by more vein resistance, or possibly trading off with other structural defenses; (2a/2b) or more reticulation (resilience, providing more alternate flow pathways after damage) or less reticulation (sectoriality, preventing spread of reduced functionality after damage). We simulated herbivory by damaging the midveins of four leaves from each of nine Sonoran Desert species. We then measured the percent change in photosynthesis (ΔAn%), transpiration (ΔEt%) and stomatal conductance (Δgsw%) between treated and control leaves. We assessed the relationship of each with leaf venation traits and other mechanical traits. ΔAn% varied between +10 % and −55%, similar to ΔEt% (+27%, −54%) and Δgsw% (+36%, −53%). There was no tradeoff between venation and other structural defenses. Increased damage resilience (reduced ΔAn%, ΔEt%, Δgsw%) was marginally associated with lower force-to-tear (P < 0.05), and higher minor vein density (P < 0.10) but not major vein density or reticulation. Leaf venation networks may thus partially mitigate the response of gas exchange to herbivory and other types of vein damage through either resistance or resilience. 
    more » « less
  2. Crous, Kristine (Ed.)
    Abstract Plants interface with and modify the external environment across their surfaces, and in so doing, can control or mitigate the impacts of abiotic stresses and also mediate their interactions with other organisms. Botanically, it is known that plant roots have a multi-faceted ability to modify rhizosphere conditions like pH, a factor with a large effect on a plant’s biotic interactions with microbes. But plants can also modify pH levels on the surfaces of their leaves. Plants can neutralize acid rain inputs in a period of hours, and either acidify or alkalinize the pH of neutral water droplets in minutes. The pH of the phylloplane—that is, the outermost surface of the leaf—varies across species, from incredibly acidic (carnivorous plants: as low as pH 1) to exceptionally alkaline (species in the plant family, Malvaceae, up to pH 11). However, most species mildly acidify droplets on the phylloplane by 1.5 orders of magnitude in pH. Just as rhizosphere pH helps shape the plant microbiome and is known to influence belowground interactions, so too can phylloplane pH influence aboveground interactions in plant canopies. In this review, we discuss phylloplane pH regulation from the physiological, molecular, evolutionary, and ecological perspectives and address knowledge gaps and identify future research directions. 
    more » « less